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INTRODUCTION

s was first pointed out by Yukawa1), the fundamental
11 property of the nuclear forces of having a limited 
range can be very simply accounted for by the introduction 
of a new kind of field, generated by the nuclear particles, 
and through the intermediary of which forces are estab­
lished between these particles. With such a field is associ­
ated, according to the principles of quantum theory, a new 
kind of particles, the mass of which is connected with the 
range of the forcesS). The value of this mass turns out to 
be intermediate between that of the electron and that of 
the proton, and actually of the same order of magnitude 
as that of the new kind of charged particles, called 
mesons3), found in cosmic radiation.

Charged meson fields can only give rise, in first 
approximation, to forces between protons and neutrons. 
Since short range forces of the same order of magnitude 
have been shown by scattering experiments to act between 
any pair of protons or neutrons, it seems necessary further 
to assume the existence of neutral meson fields; and there 
is also some evidence4) of such a neutral penetrating com­
ponent in the cosmic radiation. It is clear that the forces 
originating from a purely neutral meson field would be 
exactly independent of the proton or neutron character 
of the nuclear particles; but there is also, as shown by 
Kemmer5), a possibility of combining in a symmetrical 
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way charged and neutral meson fields so as to secure this 
charge-independence property of the nuclear forces. This 
last possibility is especially important since it permits to 
maintain a relation between a field theory of charge­
independent nuclear forces and the various effects brought 
in connection with the occurrence of charged mesons, viz. 
the relation between the range of the forces and the mass 
of the charged mesons observed in cosmic rays, the relation 
between the life-time of these mesons and the decay­
constants of ß-radioactive nuclei6), and the anomalous 
magnetic moments of the proton and the' neutron7).

The simplest wave equations for the mesons which 
satisfy, besides the claim of relativistic invariance, the 
condition of giving a positive definite expression for the 
energy, reduce to four types, characterized by different 
covariance properties of the wave-functions, and each 
allowing the existence of neutral as well as positively and 
negatively charged mesons 8\ The expressions for the 
nuclear forces resulting from each of these types of meson 
fields have hitherto been discussed by using the ordinary 
perturbation method of quantum theory and taking into 
consideration only the first non-vanishing approximation, 
in spite of the well-known lack of convergence of the 
method. Our first task will be to examine more closely 
the reliability of such results, and for this purpose we 
shall use a method of canonical transformation9) quite 
analogous to that used in electrodynamics to separate 
from the expression of the total energy of a system 
consisting of electrons and an electromagnetic field, a 
term depending only on the coordinates of the electrons 
and representing the Coulomb potential energy. For a 
system consisting of nuclear particles and any meson field, 
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it is, in fact, possible, as we shall show in the first part of 
the present paper, to find canonical transformations effecting 
the separation of a “static” interaction between the nuclear 
particles, defined as the part of the interaction which is 
obtained when one neglects the time-variations of the vari­
ables characterizing the positions, spins and isotopic spins 
of the heavy particles. The expression for this static inter­
action is found to be in all cases just the same as that 
obtained as a first approximation in the perturbation 
method and contains three kinds of static potentials, viz. 
besides a spin-independent potential and a spin-spin coup­
ling such as have hitherto been mainly used in the de­
scription of nuclear forces, a further directional coupling of 
the type of a dipole interaction.

The next question, which will be discussed in the second 
part of this paper, is that of the fixation of the choice 
hitherto left open between the four possible types of meson 
fields, and of the possibility of sharply delimiting a region 
in which the formalism thus arrived at, which has of 
course all the defects inherent in any quantum field theory, 
can be applied unambiguously. Above all, it must be ob­
served that the static potential of dipole interaction type 
is so strongly singular for infinitely small mutual distances 
of the nuclear particles that it would not in general allow 
the existence of stationary states for a system of such 
particles. In view of the provisory character of the whole 
theory, it might be attempted to remove this difficulty by 
taking recourse to some “cutting-off” prescription, consist­
ing, for example, in replacing the interaction energy of a 
pair of nuclear particles by some constant potential for all 
values of the mutual distance of the particles smaller than 
a conveniently chosen value10). Quite apart from the 
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arbitrariness involved in the fixation by means of some 
special properties of nuclear systems of a cutting-off radius 
which should be connected with the general difficulties of 
the quantization of fields, it must be stressed that in any 
such theory non-static effects which do not arise from the 
field quantization would occur to an extent sufficient to 
make the exclusive use of the static forces illusory in the 
determination of stationary states of nuclei. As will be 
shown with more detail in the second part of this paper, 
these effects are due to the time-variations of the spins 
and isotopic spins of the interacting particles which, in 
first approximation, take the simple form of precessions; 
the quantitative treatment of the corresponding contribu­
tions to the total energy is made impossible by the circum­
stance that they cannot be unambiguously separated from 
the infinite terms always present in a quantum field theory. 
It must therefore be concluded that a satisfactory field 
theory of nuclear forces must be such as not to give rise 
to any static potential of the dipole interaction type.

A further requirement restricting the choice of the type 
of meson field to be adopted is the condition that the 
interaction between a proton and a neutron should lead 
to the correct positions of the ground level and excited 
hS-level of the deuteron, known from experiment. These 
two conditions cannot be satisfied with one type of meson 
field only, but it will be seen that, if we take Kemmer’s 
symmetrical combination of charged and neutral fields, 
there is a definite mixture of two types of meson fields, 
viz. a vector meson field and a pseudoscalar meson field, 
for which the resulting static interactions are compatible 
with the requirements of the empirical deuteron spectrum 
without containing any singular terms, and in which the 
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precession effects just described become therefore negli­
gible. In such a theory, it is also possible to apply in a 
consistent way to the Hamiltonian obtained after perform­
ing the separation of the static interactions by means of 
the canonical transformation mentioned above, a prescrip­
tion regarding the interpretation of the formalism, analo­
gous to the so-called correspondence treatment of quantum 
electrodynamicsu). Needless to say, this prescription 
must include the essential restriction, pointed out by Hei­
senberg 12), of the scope of the formalism to processes 
involving only energies not large compared with the rest­
energy of the mesons.

In the third part of the present paper, we apply the theory 
just outlined to the discussion of the stationary states of 
the deuteron, including the calculation of the electric qua­
drupole moment of the ground state. As regards this last 
property, its experimental discovery by Rabi and his col­
laborators13) is of considerable theoretical importance, 
since it clearly shows that the forces acting between a 
proton and a neutron must to a quite appreciable extent 
depend on the spatial orientations of the spins of the heavy 
particles. It is therefore a satisfactory feature of the present 
form of the meson theory that it actually provides such 
a directional coupling, arising from non-static interaction 
terms, which permits a complete treatment of the problem l4).

Finally, we should like briefly to mention the bearing 
of the above considerations on the theory of ß-disintegration 
obtained by introducing, as proposed by Yukawa0, an 
additional interaction between the meson fields and electrons 
and neutrinos. In the first place, our transformed Hamil­
tonian will contain terms which represent a direct inter­
action between heavy and light particles, and which, when 
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treated as a small perturbation, immediately give the pro­
babilities of ß-disintegration processes. It may be regarded 
as a satisfactory feature of our point of view that, contrary 
to previous treatments, where the nuclear forces came out 
in the same stage of the perturbation method as the pro­
babilities of ß-decav, an exact account can here be taken 
at the outset of the main part of these forces to determine 
the stationary states of the nuclei involved in the ß-decay 
processes. It can further be seen14a) that the present 
theory, involving a mixture of two independent meson 
fields, provides a possibility of avoiding the serious diffi­
culty pointed out by Nordheim15) which affects any 
theory using only one type of meson field and which con­
sists in a quantitative discrepancy between the observed 
and the theoretical value of the ratio of the life-time of free 
mesons to that of light ß-radioactive elements. A detailed 
disçussion of the problems of ß-disintegration will be pub­
lished later, in collaboration with S. Rozental.
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PART I.
Static nuclear forces.

In the first part of the present paper, we shall be con­
cerned with the determination of the static part of the 
nuclear forces due to any one of the four types of meson 
fields shown by Kemmer8) to satisfy, besides the claim of 
relativistic invariance, the condition of giving the eigen­
values 0 or 1 for the spin, and a positive definite expres­
sion for the energy of the mesons. In each case, we have, 
as explained in the Introduction, to consider both charged 
and neutral meson fields. The attribution of an electric 
charge to the mesons démands the use of complex wave 
functions. In fact, only with the help of such complex 
wave functions is it possible to construct an expression 
for the charge and current density satisfying the continuity 
equation; and this expression then leads automatically to 
the existence of both positively and negatively charged 
mesons. On the other hand, neutral mesons can simply 
be described by real wave functions16). We have thus on 
the whole to consider in each case three non-interfering 
meson fields, corresponding to charged and neutral mesons, 
and represented by three independent sets of real wave 
functions of the appropriate covariance character.

Let us denote any three such sets of real field quan­
tities by Fr F», F3 (a whole set of tensor components 
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will for the moment be denoted by a single letter), the 
index 3 referring to the neutral field, while the indices 1 
and 2 refer to the two other real fields which together 
describe the charged mesons. We may conveniently group 
corresponding components of these sets into symbolical 
vectors denoted by

> (*;.  '•». fs)>

and this notation may be extended to the densities

* = (S,, sa, sa)

of the source distributions giving rise to the real fields 
in question. Any source density can further be expressed 
as a sum of the contributions from the different nuclear 
particles :

where denotes the contribution of the i-th nuclear 
particle.

As shown by Kemmer the combination of charged 
and neutral meson fields can be chosen in such a way 
as to secure that the resulting nuclear forces be completely 
independent of the proton or neutron character of the par­
ticles in all states of the system which are antisymmetric 
with respect to space and spin coordinates. This is simply 
effected by taking for any contribution of a nuclear 
particle to a source density S an expression of the form

wu) „(0 „(0

i. e. the product of some operator which is the same 
for the three real helds, by the isotopic spin vector
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- « T<j>, T«)

of the nuclear particle, chosen in such a way that the 
eigenvalue + 1 of refer to the neutron stales of the 
particle and the eigenvalue —1 to its proton states; the 
choice of for this purpose being, of course, necessarily 
connected with our attribution of the index 3 to the neutral 
meson field. For the reasons stated in the Introduction, we 
shall adopt this symmetrical form of the theory in the 
following treatment.

We shall begin with the case of the’vector meson field, 
which has hitherto been most extensively studied17) and 
which, on account of its similarity with the electromagnetic 
field, is perhaps more suited for the exposition of the method 
of derivation of the static nuclear forces.

1. Survey oí the formalism of the vector meson theory.
For the description of each of the three real vector 

meson fields, we have to introduce a four-vector*  (U, V) 
and an antisymmetric tensor (F, G); the charged mesons 
will thus be described by two independent sets of such 
vectors and tensors:

and the neutral field by a third set

With the notation introduced above, all field components 
can be compactly expressed as

The arrow indicates a vector in ordinary space.



12 Nr. 8. C. Møller and L. Rosenfeld:

(v, f). (X e),
and they satisfy the following system of equations*:

* The notation A represents the time derivative of .4, divided by 
the velocity of light.

F = -F -grad F+ T

F = K2 U + rot <S—
(1)

K2 F = -divF’+iV

frr — rot Í + aS ,
(2)

where - denotes
K

the range of the nuclear forces. The four-

vectors (M, Æ) and the antisymmetric tensors (T, S) re­
present the densities of the source distributions of the meson
fields according to the following definitions, which refer to 
the description of the state of the heavy particles in their 
configuration space (x , x x •••):

-> , ->(i)jar =2; jr =
at = y .v"’ =

i

(3)

(i) ->(<•) c
p2 o O X — X J

the matrices are the usual Dirac
matrices belonging to the i-th 
constants ff2, which have 
electric charge, determine the 

nuclear particle, while the 
both the dimension of an 
strength of the sources of
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the meson fields and consequently the magnitude of the 
nuclear forces. It must be noticed that, in contrast to 2V 
and S, the components TFf and T contain a factor of the 
same order of magnitude as the ratio between the velo­
cities of the nuclear particles and the velocity of light 
(which we will express by saying that they are “of the 
first order in the velocities”).

The field equations (1), as well as the equations of
motion for the heavy particles, which we need not write 
down explicitely, may be derived as canonical equations
from a Hamiltonian

is the kinetic energy of the nuclear particles, and*

1 1*  i —>2 —>2 —>21
= +k2f

- ^{jFU + T-Í}dv
(7)

the meson field energy, including the interaction with the 
nuclear particles; in the expression (6), and Mp denote 
the masses of the neutron and the proton respectively, 

—>(i)
and p represents the momentum of the z-th particle 
multiplied by the velocity of light. The canonical variables 
(p , x ) of the nuclear particles and (—F, IZj.of the 

meson fields satisfy the commutation rules

* The notation A It I and likewise Jl ) represents a double scalar 

product, i. e. a double summation .4over the ordinary
p »«

space indices p and the symbolic space indices tn.
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all other pairs commuting; their time-derivatives are then 
calculated by the usual rule 

ïz and €r being regarded as functions of the dynamical 
variables defined by the equations (2). Although this Ham­
iltonian scheme appears very unsymmetrical, it can be veri­
fied that it satisfies the requirement of relativistic invariance.

2. Separation of the static nuclear forces 
in the vector meson theory.

The analogy of the equations (1) and (2) with the Max­
well equations of an electromagnetic field suggests in the 
first place to consider as the static parts of the meson 
fields the solutions of the equations

F° = - grad F° 

div + = Æ
(9)

= rot 17° + S

rot + K2 C0 = 0
(10)

obtained from (1) and (2) by cancelling the time-derivatives 

U, F and the quantities T and Jf, which are proportional 
to the velocities of the nuclear particles. Strictly speaking, 
we should also in the expression (4) for S replace the p3 
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by 1 ; but, in order to obtain a more symmetrical treatment, 
we prefer to retain the small differences p^—1, which are 

only of the second order in the velocities. The solution of 
(9) and (10) is readily reduced—by using the condition 
div U° — 0 which follows from the second equation (10) 
—to that of the equations

I AF-k2F = -J ]
I AÍ?o-k2¿7° = rotS. J

With the help of the Green function

(ID

(12)

which satisfies the equation

A <p — K2 = — 5 ( x — x' ), (13)

we obtain immediately 

from which we derive F and 6r° by means of the first 
equations (9) and (10).

We may now define new field variables tZ1, Fl by 
putting

U=U°+U1, + (15)

If we insert these expressions into the field Hamiltonian 
we find that it separates exactly in the form

+ ^F, (16)

where the first term,
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eTT ° =r

^¡!Ííí'!+K’-(r°)2)rfl> + -’ \ {( e°)2+ K2 ( r°)2} </«, ( 17)

is a function of the coordinates of the heavy particles alone, 
while the second,

has the same form as the Hamiltonian of a meson field
in free space; the last term,

= -({ä(r°+F1) +(19)

i. e. to zero in virtue of the equations (9) and (10).
Now, it must be observed that, according to the defini- 

- ------ X
lions (15), the different components of I71, J*11 do not com­
mute with all the coordinates of the heavy particles, so that 
the terms of the Hamiltonian relating to the nuclear par­
ticles alone are not commutable with and that, therefore, 
not the whole interaction of the system is represented by

which represents both a direct interaction between the heavy 
particles and an interaction between these particles and the 
non-static meson fields, is only of the first order in the 
velocities. In fact, the remaining cross-terms, which occur 
when the substitution (15) is carried out,

\ JFl -Vo div jP1 } du + \ rot f’l + K2 u°Ti}dt>,

reduce by partial integrations to



On the Field Theoi'y of Nuclear Forces. 17

the terms and 2^ . This incompleteness of separation 
arises, however, only from the non-commutability of the

->(0 (0 (0
matrices cr , p , t and, if one could look apart from 
this non-commutability, the variables U1, F would even 
satisfy the canonical commutation rules. The separation 
(15) would then be part of a canonical transformation 
which, applied to ^F, would also effect a separation of 
this function into terms of direct interaction between the 
heavy particles and the Hamiltonian (18) of pure meson 
fields, with a small remaining interaction between these 
fields and the heavy particles.

Let of denote the unitary operator of such a canonical 
transformation, defining any new variable A' in terms of 
the old variables by the formula A' — of—lA The Ha­
miltonian of the system in terms of the new variables is 
then simply given by the expression <3” ofï,—1, where 

and e#'' are the same functions of the new variables 
as the functions oF and of the old variables, the latter 
function being defined by (5), (6), (7); we have, of course, 
identically eP' = e5? The neglect of the non-commutability 

(O' (O' .of the matrices a , p , t in the calculation of such an 
expression means neglecting some terms which contain line­
arly the commutators of these matrices with i. e. on 
account of the relation

[A', = of-i [A, <^T] of5- hei c^-iA of
, . . . , . ->(0 (0 1Pthe time-variations ol the matrices o , p , t . 11 we 

therefore conveniently define as static interactions 
-> (0 

those which are independent of the time-variations x
+(i) (0a , o , . (0 • (0p , t of the variables of the nuclear particles*,  

* In his papers cited above9), E. Stückelberg proposes a definition 
of the expression “static interaction” which, as he also points out in a

D. Kgl. Danske Vidensk. Selskab. Math.-fys. Medd. XVII, 8. 9
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we see that the canonical transformation considered will lead 
to the separation of all such static interaction terms in the 
Hamiltonian. The direct interaction term contained in 
being obviously of non-static character, the energy of static 
interaction of the heavy particles is thus simply obtained 
by putting in the expression (17) for ©^.° all p<b equal 
to 1 ; the remaining non-static part of <?^° is only of the 
second order in the velocities.

The explicit expression of the operator of of a canonical
transformation which, under neglect of the non-commutabi- 

(0 (i)
lity of cr , p , T , contains the formulae (15), is easily
verified to be*

with
eJ7Ç = \ {f° U- U°f} dv.

We have in fact

(20)

F = eP ' <7eP = r+ eP ‘[c cf] = f + / [V,
he r

——>"
= L — 17° Ux,

and similarly
/<*'  = F—F° Fl,

p —~l
when |y4, is com-

X
since [jL, of J

mutable with which is the-case for Á — 17 and .1
= Jhe

note to “Nature”, 143, 560 (1939), differs from the definition adopted
—

here by excluding only the terms depending on the .t. As will appear 
in Part II, the present definition would seem more convenient for the 
formulation of the restrictions to be imposed on the physical interpre­
tation of the formalism.

* Of course, the operator o5° is not uniquely determined; another 
possible choice would be, for example,

_ ~ \ F° U dv — ~ \ L’° V dv.
.e hci

About this point, see p. 37.
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when we neglect the non-commutability of spin and isotopic 
spin operators. Always with this last restriction, the trans­
formation ei’ leaves all the variables of the nuclear particles 

->(i)
unchanged with the exception of the momenta p . In terms 
of the new variables, the Hamiltonian of the system is 
given by

of' eT-1 = <&' eT’1,

where oP', as already stated, is the same function of the 
new variables as the function of of the old variables defined 
by (20). The term eSa/ of'-1 differs from the kinetic 

energy of-the heavy particles only through new inter­
action terms

oT“1 [ e7Ç

of the first order in the velocities, while of course

with the definitions (17), (18) and (19).

3. Pseudoscalar meson theory.

The method explained in the preceding section may 
immediately be applied to any other type of meson field. 
Since the procedure is entirely similar in all cases, we 
shall in this section give a brief treatment only of the 
pseudoscalar meson theory, which, as stated in the Intro­
duction, will be used extensively in the following. The 
field components here consist of pseudoscalars *1 ’ and pseudo­
four-vectors (I", <l>) satisfying the equations

2
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y = <!> O

_<|’> = K2 4» + div r — II,

I1 = — grad *F  + P,

(21)

(22)

in which the sources of the field are represented by the 
density functions

(23)

(24)

transforming respectively as pseudoscalars and pseudo-four- 
vectors; the constants fx and f2 are again chosen so as to 
have the dimensions of an electric charge. The quantities 
fí and O are of the first order in the velocities.

The field equations (21), with T defined by (22), appear 
as canonical equations if we regard the T’s as canonical 
variables with conjugate momenta <l>, obeying the commu­
tation rules

etc., and if we take for the field Hamiltonian, including 
interaction with the nuclear particles,

(26)
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From the point of view of the derivation of the field equa­
tions (21), the addition to the Hamiltonian of the last 
integral, which is an invariant function of the variables 
of the heavy particles, remains of course arbitrary. The
reason for its inclusion in the present case, in contrast to the 

omission of the corresponding integral 

in the vector meson theory, will become apparent in the 
next section.

The static parts Vo, <I>O of the pseudoscalar meson fields 
will be defined as the solution of the equations

<l>° = 0,

I f° = - grad T° + P | 
( diví^+K2^0 = 0; J

(27)

(28)

the equations (28) are equivalent to

giving
A Vo-K2 Vo = div/*,

\ div P ( x' ) • <p (r) dv'.
•7

(29)

(30)

Defining new field variables T1, by the relations

[ V = 4»°+V1 I
I <1> = <!>', j (31)

we obtain a separation of the Hamiltonian

(32)

entirely analogous to (16), since the cross-terms again vanish 
on account of (28). We have here
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\ {(F,)‘+ Ka (4>°)2- (p)*}  di>, (33)

= 2 V(,l>I)2 + (grad*‘)2 + K2(*l)2}d"’ (34)

= -^B(F+4ll) + e<l>,)*+ ‘\<f2du. (35)

If we again provisorily look apart from the non-commu­
tability of spin and isotopic spin matrices, we see that this 
separation is effected by applying to the total Hamiltonian 
<s7¿k + a canonical transformation, the operator of
which is

with

(36)

The static interaction is in this case given by (33).

4. Calculation of the static interaction potentials.

It remains to put the static interactions derived in the 
preceding sections into the form of potential energies of 
the heavy particles, i. e. to express them as explicit func­
tions of the dynamical variables of these particles. Let us 
begin with the expression (17) relative to the vector meson 
theory. By partial integrations and use of the equations (9) 
and (10), we find readily



On the Field Theory of Nuclear Forces. 23

with the help of (14) and (13), we obtain further*  from 
the definition (10)

and finally, introducing through (3) and (4) the variables 
of the heavy particles,

If we put all p(3l) = 1, this expression gives the potential 

energy of static interaction due to the vector meson fields, 
including—as a defect inevitable in any theory treating the 
nuclear particles as material points—the infinite static self­
energies of these particles.

* When necessary, we affect the operators grad, div, rot ... w ith 
the same index as the point at which the derivatives are to be taken.
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Passing now to the case of the pseudoscalar meson 
theory, we get similarly from (33) and (28)

(40)

so that the static interaction in this case becomes

| \ (/*  ( x ) grad) ( P ( .r') grad') <p (r) dv du (41)

or, on account of (24),

grad“*) <?(/“*). (42)

It will be observed that, if the invariant ~ —(*̂)  \

had not been included in the Hamiltonian defined by 
(26), we would have obtained a supplementary static 
interaction 

which, as discussed by Kemmer18), is of so strongly 
singular a character that it could not give any finite bind­
ing energy for the deuteron. With our choice of the Hamil­
tonian this singular term is eliminated, and there 

occurs instead a term j ty2 do which, though of the same 

type, is only of the second order in the velocities and 
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therefore inseparable from all other infinite terms to 
be discarded according to the correspondence point of view 
developed in Part II. In the vector meson theory, no such 
singular terms occur if, following Yukawa 17\ the Hamil­
tonian (7) is adopted in preference to an expression differ­
ing from (7) by the term- —(s) } do, which has 

been considered by other authors17*.  This would perhaps 
appear as a natural way of removing the arbitrariness 
connected with the occurrence in the formalism of such 
singular terms of direct coupling between the nuclear 
particles.

For the two remaining types of meson fields, we shall 
only write down the expressions for the static interactions, 
resulting from entirely similar considerations:

Scalar meson field:

1
2

(43)

P s e u d o V e c t o r meson field:

Comparing the expressions (39), (42), (43), (44), we see 
that they contain three different kinds of potentials, viz. 
(apart from the dependence on isotopic spin common to 
all of them): 1) a potential <p(r(i*))  depending only on the 
mutual distances of the nuclear particles; 2) a spin-spin 
coupling \ a o ) q>\r /; 3) a directional coupling
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these

(45)

with coefficients given by

(46)

1
o

K"

^2

G3

which, apart 
interaction.
resulting from an arbitrary mixture of the four 
meson fields is, therefore, a linear combination 
three kinds of potentials,

= .9?-A'2

= ff22~f22-ffl2+ff22

from the sign, is of the type of a dipole 
The most general form of static interaction, 

types of 
of
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Part II.
Limitations of the Formalism.

1. Difficulties arising from the potential of 
dipole interaction type.

For the fixation of the choice between the four possible 
types of meson fields responsible for the nuclear forces, 
an important criterion is afforded by our empirical know­
ledge of the stationary states of the deuteron. In trying to 
account for the deuteron spectrum by means of one type 
of meson fields only, vector meson fields have generally 
been adopted 17\ in spite of the fact that the correspond­
ing static interaction (39) includes a term of dipole inter­
action type which, strictly speaking, makes the existence 
of stationary states of finite binding energy impossible. In 
view of the provisory character of any quantum field 
theory at the present stage, this difficulty might, in fact, 
not be deemed fundamental, and it might be attempted 
to avoid it by a cutting-off prescription. Such an attempt, 
carried out by Bethe10), has led to the conclusion that, 
while the way in which the cutting-off is performed is of 
small influence on the results, the value to be assumed 
for the cutting-off radius depends critically on the combin­
ation of charged and neutral meson fields adopted: if one 
uses the symmetrical combination proposed by Kemmer, 
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the cutting-oíf radius should be chosen larger than the 
range of the nuclear forces, and a reasonable value of this 
radius could only be obtained if the meson held were 
assumed to be purely neutral. Even looking apart from 
the unsatisfactory character, pointed out in the Introduc­
tion, of a purely neutral meson theory of nuclear forces, 
any meson theory involving forces of the dipole interaction 
type is affected, however, as we shall now proceed to 
show, by a. more Serious difficulty, due to the noil-static 
effects connected with such forces.

In order to get an idea of the nature of these non­
static effects, we have, according to the considerations of 
section 2 of Part I, to examine the time-derivatives of 
the dynamical variables of the nuclear particles occurring 
in the expression of the transformation matrix eP, i. e. 
-> (i) —> (i) (i) (Í)
x , a , p3 , T ; neglecting all terms depending on the 
velocities of the heavy particles, we are left with the 

~>(i) • (0consideration of cr and t . The motions corresponding to 
these time-variations may be described as a precession of

->(i) r (0 .
the vector cr in ordinary space and of the vector t in 
symbolic space; for instance, in the most familiar case of 
the vector meson theory, developed in Section I of Part I, 
these motions are defined, to the approximation indicated, 
by the equations*

.* The symbols A and/v indicate a vector product in ordinary and 
symbolic space respectively. The abbreviation “conj.” will sometimes be 
used to represent the Hermitian conjugate of the expression preceding it.
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(In the last formula, a term proportional to the small
Mp) c

quantity ------ —----- has been neglected). A criterion of the

importance of the non-static effects can be derived from 
an investigation of the amount of these precessions which
is due to the static part of the meson fields. In our ex­
ample of the vector meson theory, we obtain the corres­
ponding time-variations by inserting in (47) the expres­
sions (14) and (37) of l’° and €?°:

the terms corresponding to k = i in the summations vanish­
ing automatically. On account of the separation (16) of the 
Hamiltonian, these equations are of course simply 

with given by (39); and, for the most general form 
of meson theory, the corresponding equations may be 
obtained in the same way, being replaced by the 
general expression (45):
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Now, it is clear that if the periods of such precessions 
are not large compared with the time of propagation of 
the main part of the non-static meson fields through a 
distance of the order of the range of the static nuclear 
forces, there is no justification in using only the static 
parts of the meson fields for the determination of the sta­
tionary states of a nuclear system. According to (49), the 
angular velocity of precession of spin and isotopic spin 
of a nuclear particle is, for sufficiently small values of 
the distance r of the next neighbour in the nuclear con­

figuration considered, of the order of magnitude ~ -23 —3
Il Z? K 4 TT r

if Go # 0, and — G    if G3 = 0, G being written for G, 

or G2; on the other hand, the time of propagation of the 
main part of the non-static meson fields through the distance 
K 1 will be of the same order of magnitude as —. The

KC 
condition just formulated defines therefore a critical value 
rc of the distance r, such that the consideration of the 
non-static forces will be important as soon as r<rc. If 
the theory involves static couplings of the dipole inter­
action type, we have therefore

3

(50) 
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while, if no such couplings occur, we find for the critical 
distance the smaller value

G
Krc = 7—r- • c 4 IT he (51)

In a purely neutral meson theory, entirely similar con­
siderations apply to the o-precession. In particular, taking 
the theory of neutral vector mesons investigated by Bethe10), 
for which he gives*

jAt = = 0 08 ’
4tt/ïc 4irnc

we see that the critical distance given by (50) is of the 
same order of magnitude as the cutting-off radius

Kr() = 0.320 or 0.436.

It would, therefore, not seem consistent to disregard the 
non-static forces even in a treatment involving a cutting- 
off prescription. Neither can there be any hope that an 
explicit consideration of the precession effects just discussed 
would permit to avoid the singularities of dipole inter­
action type, since the contributions to the energy of the 
system arising from these effects are of an essentially dif­
ferent form. Above all, however, such large precession effects, 
although not directly depending on the quantization of the 
meson fields, could not be unambiguously separated from 
the typical quantum effects which give rise to the well- 
known divergences of any theory of quantized fields. We 
may, therefore, conclude that, within the frame of the 
present formalism, we can only expect to obtain a meson

* The explicit appearance of the factor 4 ir is due to our use of units 
analogous to the Heaviside units of electrodynamics. 
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field theory capable of consistent interpretation (to a suf­
ficiently restricted extent) if all couplings of dipole inter­
action type are eliminated at the outset, i. e. if

G3=0. (52)

On the other hand, a more detailed examination of the 
non-static meson fields due to the spin and isotopic spin 
precessions, to which we will come back in section 5, 
shows that, in a theory which does not involve any coup­
ling of dipole interaction type, the effect of these fields on 
the stationary states of a nuclear system will actually be 
much smaller than that of the static forces, if the mean 
distance between any pair of nuclear particles in such a 
state is larger than the critical distance defined by (51). 
A comparison with the empirical data, which will be given 
later in connection with the discussion of the properties 
of the deuteron, shows that the last condition is well ful­
filled for ordinary nuclear systems. As regards the difficulties 
of field quantization, we might perhaps expect that the unam­
biguous conclusions derived by completely disregarding them 
would still be reliable provided the theory using the unquan­
tized fields does not itself contain any ambiguity. From this 
point of view, we should conclude that, in a meson theory 
satisfying, besides (52), the condition just discussed, only 
the static potential will be of importance for the deter­
mination of the stationary states of nuclear systems.

2. Choice of a special form of meson theory.

Let us now consider the different forms of the meson 
theory satisfying the requirements in question. In order to 
secure agreement with the known properties of the sta­
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tionary states of the deuteron, we have to impose further 
restrictions on the static potentials given by these theories. 
In particular, we shall require that the static potential be 
attractive in the 3S and states of the deuteron, revealed 
by scattering experiments, and that the 3S-level be 
lower than the 1S-level. It will be seen—always assuming 
Kemmer’s symmetrical combination of charged and neutral 
meson fields—that these simple qualitative requirements, 
which lead to two independent inequalities involving Gt 
and G*,  are, together with (52), sufficient to restrict the 
choice of the form of meson theory to an essentially unique 
possibility.

According to the expression (45) of the static potential, 
with G3 = 0, the mentioned inequalities to be fulfilled by 
Gi and G2 are

— 3 (Gt + G2) < Gt — 3 G2 < 0,

which reduce to

(53)

From the values (46) of Gx and G2 it is immediately appa­
rent that the conditions (52), (53) cannot be fulfilled by 
any theory involving only one of the four possible types 
of meson fields, so that we are led to consider the pos­
sible mixtures or “compositions” of two or more of these 
types of fields. It is then easily verified that, if we try to 
compose only two types of fields, the only possibility is 
a mixture of vector and pseudoscaiar meson fields satis­
fying the conditions

(55)

(54)

D. Kgl. Danske Vidensk. Selskab, Math.-fys. Medd. XVII, 8. 3
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It should further be observed that from the point of view of 
nuclear forces the possible compositions of three or four types 
of meson fields (obtained by adding to a mixture of vector

✓
and pseudoscalar fields either a pseudovector field, or a 
scalar field, or both) only differ from the composition of 
two fields just mentioned by unessential numerical changes 
of the constants g, f, so that their greater complication is 
not compensated by any advantage*.  We shall therefore in 
the following adopt the simplest mixture of vector and 
pseudoscalar meson fields, as defined by the relations (54), 
(55).

The corresponding Hamiltonian may be written

(56) 

with (^'F, given by (6), (7) and (26), respec­
tively; the commutation rules between pairs of canonically 
conjugated variables are given by (8) and (25), all other 
pairs of variables commuting. The separation of the static 
potential- may be effected by the canonical transformation 
defined by the operator

-*  '2'V? he
* (57)

with

* An entirely similar discussion may be carried out in the case of 
a purely neutral meson theory, the static potential being then given by 
the expression (45) with the factors T^) omitted. The inequalities 
to be fulfilled by Gx and G2 are in this case

G1+ G2<Gí —3G2<0,
reducing to

Gi<3G2, Grief).

Also in this case, there is one possible composition of two fields, viz. a 
mixture of a scalar meson field and a pseudovector meson field, and 
this possibility is essentially unique.
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<a7iÇ and being given by 
, , ->(0' ~>(0 ->’(«•)' (O'

ables x — x , p , p3 =

(20) and (36); the new vari­
ed ->(0'p3 , cr , (O' 

T ; U', F’-, t ,
<!>' = <I> are defined in terms of the old variables by for­
mulae of the type A' — of>~1 A of. As a function of the new 

variables, the Hamiltonian takes then the form

qP'~ 1 (58)

if e7A' and of' denote the same functions of the new vari­
ables as the functions and e^of the old variables defined 
by (56) and (57). In the next sections, we shall discuss 
the general features of the physical interpretation of this 
formal scheme.

3. Interpretation of the transformed variables.

The interpretation of the different variables is closely 
connected with the form of the fundamental integrals of 
the system, representing its total linear momentum*

F^ grad I 'U du — \ <1*  grad T 'du, (59)

its total angular momentum*

U = 1

3

— \ £7 A F du — \ <I> ( x A grad) HP du,

( .r A grad) U^du

and its total electric charge

* The formulae (59) and (60) represent the indicated quantities 
multiplied by c.

3
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i

(61)

The conservation laws for these quantities follow imme­
diately from the invariance properties of the Hamiltonian, 
since the expressions (59) and (60) are respectively propor­
tional to the operators of the infinitesimal transformations 
of the groups of translations and rotations in ordinary 
space, while the expression (61) is closely connected to 
the component of index 3 of the transformation in iso­
topic space analogous to a rotation, viz*.

Tic
y U A du + TA<I>dp (62)

(there being here no terms analogous to orbital momenta).
The three integrals (59), (60), (61) have the property 

of being sums of terms referring separately to the heavy 
particles and to each type of meson field. As regards the 
angular momentum, it is further possible to distinguish, 
for the heavy particles and the vector meson fields, between 
orbital momentum and spin, while the pseudoscalar meson 
fields have of course no spin, it is just these additivity 
properties which provide the justification for the usual inter­
pretations of the variables. This is first of all the case for 
the variables p \ cr ° and t of the heavy particles; the 

expression (61) shows further how the two first symbolic 
components of the field variables are associated with 
charged mesons, while the components of index 3 correspond 
to neutral mesons; finally, if the linear momentum (59) is 
expressed in the usual way as a function of the Fourier

The formula (62) represents the indicated quantity multiplied by c. 
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amplitudes of the field variables, the resulting expression 
shows clearly the connection of these amplitudes with mesons 
of definite momentum.

Now, it is of course desirable that also the transformed 
variables should possess all the properties just discussed, 
and it should be pointed out that this is actually the case 
for the transformation defined by the operator (57). In fact, 
the invariance of this operator with respect to transla­
tions and rotations in ordinary space as well as to rota­
tions in symbolic space leads at once to the conclusion 
that the operators (59), (60), (62) commute with gP, so that 
the integrals of linear momentum, angular momentum and 
electric charge of the system, in contrast to the energy, are 
the same functions of the new variables as the functions 
of the old variables given by (59), (60) and (61).

The requirement that our canonical transformation should 
thus conserve the form of the integrals (59), (60), (61) re­
stricts to some extent the arbitrariness in the choice of the 
operator eP as a product of exponential factors (cf. footnote 
on p. 18). In the first place, all the exponents must be 
invariant with respect to ordinary rotations; further,, in 
order to uphold the additivity property of the total electric 
charge (61), they should be invariant with respect to rota­
tions in symbolic space about the “direction” of index 3, 
i. e. they should be of the form Ba, or Aj Bt + ^2 ^2 ’ 
or AH. The form (57) for ei° has been adopted only on 
account of its greater symmetry and simplicity.

4. The Hamiltonian in terms of the new variables.

We shall now proceed to derive a more explicit expres­
sion of the Hamiltonian (58) in terms of the new variables, 
bringing out the effects due to the non-commutability of



38 Nr. 8. C. Møller and L. Rosenfeld:

the spin and isotopic spin variables. For this purpose, we 
shall start by replacing in (56) eZÇ and by their ex­
pressions (16) and (32) resulting from the explicit intro­
duction of the static parts of the meson fields. Neglecting 
all terms of higher order than the first in the velocities 
of the heavy particles, we may thus write

@7^ = eJr-F <fl, <I>9+ (63)

where the first term
<^n==^+^n (64)

is the sum of the kinetic energy &7Q and the static inter­
action

of the system of nuclear particles, the second term is the 
function

representing the Hamiltonian of a system of pure meson 
fields, taken for the field quantities I71, JF1; Tl, <1>1 delined 
by (15) and (31), and the third term is the coupling

+ TF+IW + Q<b}dv, (67)

of the first order in the velocities.
Now, if A is any function of the old variables, we 

have for its expression in terms of the new variables the 
general formula
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with

(1 brackets)

(68)
ef'A' A' 4- •+åU a' ■+..

nc Z! \hc

0 ¿tt, a 4 i ¿zr, -- • • - , ^-í ¿ZC A'lhe he ’ Zzc ’ J -

in which A' denotes in the usual way the same function of 
the new variables as the function A of the old variables. 
We therefore get

F-/'; V'- <!>') +

with

1 Í i
Z!

(70)

(69)

and similar formulae for f and ip'. Since we shall in 
the following make use exclusively of the new variables, 
we may from now on, for convenience, omit the primes 
by which they were hitherto distinguished from the old 
variables.

Noting that

~ r] = r, jp] = f°, -J- [¿zr, <f] = 4'°, (7i)

we find from (70) for î/, /*  ip expressions of the type

(72)

showing that, as was to be expected, these quantities would 
vanish if we could look apart from the non-commutability 
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of all spin variables. It is further apparent that w, f, 
satisfy equations of the same form as the equations (9), 
(11), (27), (29) for £7°, F°, In fact, we have

with

grad Ji
rot »

div grad ip — K2q¿ = div p,
(73)

(74)

In particular, we can derive from (73) the expressions

grad ip = — t <p (r) di/ grad div p ( a?')

<p du .

(75)

Taking account of the formulae (73) and (75), we 
obtain, according to (66), by means of partial integrations,
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F-?: T —<1») =

(76)

besides the written terms in (76), there occurs a further 
expression

which, however, vanishes except for terms of at least 
second order in the velocities.

Turning to the fourth term in (69), we may transform 
it into
00 00

1 J i
(14- 1) !

if we denote
®

in general by A the time variation of A

(79)

due to the motion of the nuclear particles under the 
influence of the static forces; thus

¿7?= J {r°U-U°F + ^°^}du. (80)

As regards the last term in (69), we may write, on ac­
count of (71),

~ 2^] = 20 + ™
nr* (81)



42 Nr. 8. C. Møller and L. Rosenfeld:

with =-\{MU°+TF°+lt'V°}dv (82)

(83)

it is readily seen that the factors of the products occurring 
in n—and consequently also of those occurring in w — 
are commutable, so that both n and n> are real operators. 
Using the formulae (9), (14), (30), the term (82) of direct 
coupling between the nuclear particles is easily brought 
into the form

(x)as(x)+At(Î)
9’

• grad cp dv du ,
(84)

or, with the expressions (3), (4), (23), (24), and omitting 
the undefined contributions which correspond to self­
energies (z = k),

Summing up, we find, on account of (76), (78), and 
(81), for the expression (69) of the Hamiltonian as a 
function of the new variables,
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(86)

It consists of the Hamiltonian given by (64), (65), of 
the system of nuclear particles with static interactions, the 
Hamiltonian defined by (66), of the pure meson fields, 
and several coupling terms, depending on various quanti­
ties defined by (67), (74), (80), (83) and (85); it should 
be remembered that the expression (86) is exact only to the 
first order in the velocities of the heavy particles. Further,

®
we shall, in all terms containing eTT, disregard the con­
tributions arising from the mass-terms in the kinetic energy 
(which represent couplings between the heavy partie­

fix
For later purposes, let us write 

tions derived from (86), when we

les and the meson fields), since they involve the factor 
(Afv—iWp)c . Q

, which is small compared with -——.4 it fic 
down the field equa- 
look apart from all

velocity dependence, and thus in particular cancel the 
terms of the last line in (86):

17 = — J^4-k 2 grad div JF—f7° + Ó
• ®

F = k2?-f-rotrot ¡7-JF° + O,

I y = —+ o
[_<!> = +

(87)
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here the “stationary” source densities — U°, — F°, —V arise
© —>

from the term —in (86), while the symbols O, O 
denote the source densities derived from all other velocity­
independent coupling terms in the Hamiltonian.

In the expressions of the source-densities which we 
have called “stationary”, the velocity-dependent terms are 
of course to be cancelled, so that these sources just corres­
pond to the precessions of the spins and isotopic spins of 
the heavy particles under the influence of the static forces.
While they are of course independent of the field variables, 
the other source densities O, O do not contain any field­
independent part, since the terms in (86) from which they 
are derived are at least quadratic functions of the field
variables. This follows at once from the remark that
ÍJ
I he

V
(Z> 1), where A is any function of the variables 

of the heavy particles alone, is homogeneous of order I in 
the field variables. Such a property would be quite trivial,
were it not for the non-commutability of the field compo­
nents U and /v’; since these, however, occur only in the 

combinations
/ i ’ V

order of | — Aj in the field variables could only arise 

F° Í du and U°Fdv, a reduction of the

through a factor

~ JF° C?) * [ F ), F (1?) J ' U° G?) du du'

= \f° du,

which, according to (9) and div U°=O, reduces to zero. 
We are now prepared to discuss, in the next section, 

to what extent an unambiguous solution of the field equa­
tions is possible, and whether the non-static meson fields 



On the Field Theory of Nuclear Forces. 45

so obtained are of any importance for the properties of 
the stationary states of nuclear systems.

5. Physical interpretation of the formalism.

The convergence difficulties which prevent a consistent 
combination of the field concept with the ideas of quantum 
theory, oblige us to restrict in a suitable way the use of 
the formalism developed in the preceding sections. In the 
case of electrodynamics, the choice of the required restric­
tions is guided by the well-known correspondence argu­
mentn). It is true that we have in the present case, on 
account of the large meson mass, no empirical evidence 
of field properties of mesons in a domain where quantum 
effects would be negligible; but just in the critical region, 
defined by (51), with which we are concerned in the 
problem of nuclear fields, the influence of the meson 
mass on the properties of the field becomes unimportant. 
It therefore seems natural to adopt, in discussing the 
limitations of the formalism of meson theory, a point 
of view closely analogous to that of quantum electro­
dynamics.

The canonical equations derived from the Hamiltonian 
should thus not be considered as an exact system of 
equations, but solved by a process of successive approxi­
mations in which, starting from a suitably defined unper­
turbed system, the calculation of the solution corresponding 
to a given initial state of this system should not be carried 
further than the first step leading to a non-vanishing result 
for the effect under consideration; and such results should 
of course only be considered as reliable if even this first 
step does not involve any ambiguity.
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The justification of such a procedure, as well as the 
precise way in which it is to be conducted, can only be 
derived from the treatment of the “corresponding” problem, 
in which the meson fields are not quantized. If, in such a 
treatment, we start from a state in which all the field 
components are zero everywhere, it is clear that, provided 
the procedure cônverges, the various interactions between 
heavy particles and meson fields, and the resulting source 
densities in the meson field equations, are to be regarded 
as perturbations of increasing order according to the power 
to which they contain the held components. We have 
further to demand that, in the application of the method 
of successive approximations thus defined to the system of 
unquantized meson fields, the effects of higher order than 
those which should alone be retained according to the 
above prescription be actually negligible.

Looking from this extended “correspondence” point of 
view at the Hamiltonian (56) expressed by the original 
variables, we see that a strict application of the prescription 
just formulated would not lead to any reliable estimate of 
the binding energy of a nuclear system: it is true that 
we could in this way derive the expression of a direct 
coupling between the heavy particles, but we would not be 
justified in treating such an expression as an operator 
which, together with the kinetic energy, would determine 
the stationary states of the nuclear system. A quite analog­
ous situation would of course be met with in electro­
dynamics, if the same prescription were applied to the 
Hamiltonian including the longitudinal part of the electric 
field and vector potential; in fact, a true correspondence 
with classical theory is only achieved when these longitu­
dinal fields have been eliminated and replaced by the static 
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Coulomb interaction. It is just the purpose of the canonical 
transformation discussed in Part I to obtain for the treat­
ment of nuclear systems a starling point comparable to 
the quantum mechanics of atomic systems. Although the 
seperation of the static part of the fields, performed in 
this manner, is not a relativistically invariant operation, 
we have in either case a natural frame of reference (viz. 
that in which the centre of gravity of the system is at 
rest), with respect to which such a separation has a well- 
defined meaning.

We have thus to examine to what extent a con­
sistent use of the scheme based on the Hamiltonian (86), 
expressed in terms of the transformed variables, may be 
found by means of the “correspondence” prescription 
formulated above. For this purpose, we shall first discuss 
the convergence of the corresponding theory in which the 
meson fields are not quantized, and afterwards the limi­
tations imposed on the theory by the difficulties of field 
quantization. In this discussion, we shall of course be 
concerned with two distinct problems, viz. the influence of 
the non-static forces on the stationary states of nuclear 
systems,, and the transition processes due to the interaction 
between such systems and the meson fields.

As regards the calculation of the non-static interaction 
between heavy particles, arising from unquantized meson 
fields, we shall first investigate the non-static meson fields 
due to the stationary source densities in (87). Since we 
are interested in the values of these fields in the region 
occupied by the nuclear system, we may neglect the retarda­
tion effects; remembering that div TJ° — 0, rot F° — 0, 
we therefore get immediately from (87), for the quasi- 
stationary fields due to the spin precessions,
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—2= K
i i ®
F°, F= ~ U°, 0\= *,=  0. (88)

, (89)

•(90)

x *— x"

r tf K I X — X
2

In order to estimate the influence of such fields on the 
stationary states of nuclear systems, we shall compare the 
interaction energy sU to which they give rise with the 
static interaction A sufficiently accurate expression of 

<&s is obtained by inserting the fields (88) in the corres-
® 

ponding approximate field Hamiltonian Using
(13) and

(<p(| x — x']j <p-(|

we get

there occurs a further term

D)Ç du du' du" I ( x' ) g

J
— ( ( X ) grad <p (I

which vanishes to the first order in the velocities. For 
estimates of order of magnitude, it will be sufficient to 
consider a pair of nuclear particles at some fixed distance 
r(<K—1), the different powers of this distance representing 

the order of magnitude of the expectation values of the 
corresponding quantities in the stationary state concerned, 
provided these expectation values are finite. The relative 
orders of magnitude of velocity-independent terms of 
interaction are then conveniently expressed in powers of 
the parameter
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Y — ; ---- “ (G ¿ or ø2). (92)' 4Trhc Kr v ,2 v 7

Thus, by reference to the formulae (49) (with G3 = 0), we 
see that

^.c^y2^n; (93)

the requirement that be small compared to leads
therefore precisely to the introduction of the critical 
distance rc defined by (51). Passing to the higher approx­
imations in (87), and observing that the order of magnitude 
of the quantity ©7ÍC, in which the stationary fields (88) have 
been introduced, is just y2, we may easily verify that all 
successive contributions to the interaction between nuclear 
particles differ as to order of magnitude at most by powers 
of y. If we now also take into account the velocity­
dependent contributions, we have to introduce, besides y, 
another parameter

v J_ 
c Kr '

where v represents the order of magnitude of the velocities 
of the heavy particles. The main velocity-dependent contri­
bution to the coupling between nuclear particles is the term

(95) 

which, since it does not involve the meson fields, may 
from our present point of view simply be included in the 
Hamiltonian of the unperturbed system of nuclear particles, 
where it will be considered as a correction to the static 
interaction. The other velocity-dependent couplings, which 
all represent interactions between the heavy particles and the 
meson fields, will be seen to give contributions of higher order 
in ß or y. This holds further for the contributions arising 

4 D. Kgl. Danske Vidensk. Selskab. Math.-fys. Medd, XVII, 8.
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from the terms of second order in the velocities, which 
we have omitted from the Hamiltonian (86). Since, for 
actual nuclear systems, ß is numerically about the same 
as y, the convergence condition ß « 1 leads again practic­
ally to the value of the critical distance rc given by (51). 
It should be observed that, if we had performed the 
preceding discussion in the case of the pure vector meson 
theory or any other including static couplings of the dipole 
interaction type, we would have had to take account of 
velocity-independent terms corresponding to the first terms 
of (77) and (91), and we would have been led to a condi­
tion involving the critical distance (50) instead of (51).

As is well-known, the quantization of the meson fields 
implies the occurrence of fluctuating fields even in the 
absence of any nuclear matter, and the interaction of such 
zero-fields with any nuclear particle will give rise to an 
infinite contribution to the self-energy of the particle. 
While, as we have just seen, the interaction between 
nuclear particles due to unquantized meson fields could 
in principle be calculated to any approximation, provided 
only that the distances involved are larger than the critical 
distance rc, the necessity of avoiding the infinite self­
energies due to the zero-fields forces us, in accordance 
with our general prescription, to discard entirely all non­
static terms of direct coupling between nuclear particles 
(except of course the term included in the unperturbed 
Hamiltonian of the system of nuclear particles).

The consideration of the probabilities of transition 
processes due to the interaction between heavy particles 
and meson fields imposes on the theory, according to 
Heisenberg12*, a radical limitation arising from the 
increase of the probabilities of “explosive” processes, when 
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the energy involved becomes large compared with the rest­
energy of the mesons. In fact, if À is the wave-length of 
the mesons taking part in the process considered, it is 
easily seen that, for the first explosive processes to set 
in when the energy increases, the transition probabilities 
are proportional to some power of the parameter

6 1
a 4 it Tie (kA)2'

The order of magnitude of the energies for which 
explosions set in is thus connected, according to (96), 
a critical length given by

which is smaller than the critical distance rc in the 
vector meson theory, given by (50), but larger than the 
distance (51) corresponding to the form of the theory 
which we have adopted. This limitation affects equally 
any form of meson theory, except19- a theory of purely 
neutral meson fields involving only couplings which depend 
on the fundamental constant gv

If, as advocated by Heisenberg, the critical length r0 
has a universal significance, in the sense that the usual 
concepts of field theory would not be applicable within 
regions of a linear extension smaller than r0, we have to 
expect in our case a somewhat more rigorous restriction of 
the domain of applicability of the interaction potentials 
and than that defined by the critical distance rc. Still, 
there remains a range of distances between r0 and k \ 

where the form of these potentials is significant and where 
4*  

(96)

such
with

(97)

nure
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the treatment of the stationary states of nuclear systems 
outlined above yields (in contrast to the case of vector 
meson theory) unambiguous results*.  It seems probable 
—though by no means certain20)— that such results 
would not be essentially affected by the modifications 
which a rational introduction of the universal length r0 in 
the theory would involve, since these modifications would 
presumably be confined mainly to regions of linear exten­
sions smaller than r0, w'hich are of minor importance for 
the determination of stationary states.

From the preceding discussion we conclude that, if we 
treat the Hamiltonian (86) from the correspondence point 
of view described in this section, we obtain as the only 
significant interactions between nuclear particles those 
defined by the potentials and ^n', the other terms of 
coupling between nuclear particles and meson fields may 
be used only to calculate, in conformity with the corre­
spondence prescription, the probabilities of the various 
transition processes involving energies of the mesons not 
large compared with their rest-energy.

As regards the determination of such transition pro­
babilities, it should be observed that, for purposes of prac­
tical calculations, it would in most cases be more advan­
tageous to apply the procedure of successive approximations 
described to the Hamiltonian (56) expressed in terms of 
the old variables, since the operator of interaction between 
nuclear particles and meson fields involved in this Hamil­
tonian has a much simpler form. If the use of the original

* It will be noticed that the existence of the universal length ro 
would deprive of any well-defined meaning all potentials of direct inter­
action between three or more nuclear particles, which, as shown by the 
preceding discussion, become important only for distances of the order 
rc. Cf. 19a). 
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variables is thus adopted,—as has naturally been the case 
in all calculations hitherto carried out,—it is obviously 
permissible to add to the Hamiltonian of the unperturbed 
nuclear system the interaction potential 2^4- since 
this operator does not give any contribution to the matrix 
elements contained in the expression of the transition pro­
babilities. From the character of the processes involved, it 
is clear that results obtained in this way should be entirely 
equivalent to those of calculations using the transformed 
variables, in spite of the widely different forms of the inter­
action operator in the two cases. In fact, the probabilities 
of such processes are proportional to the square of the 

matrix elements of the operator e h for initial and final 
states of the whole system, consisting of some stationary 
state of the unperturbed nuclear system and (at least for 
one of the two states) one or more meson wave-packets 
at large distances from the nucleus. If we use the new 
variables, and if we also apply the transformation to 
the scheme of representation, we should, according to the 
conclusions of Section 3, take as wave-functions describing 
the initial and final states the same functions in the new 
representation as in the old. Strictly speaking, we have 
therefore to do with different states in the two cases, but 
the difference is vanishingly small for the kind of states 
concerned, since the transformation eV’ modifies only the 
form of the meson field components in the neighbourhood 
of the nuclear particles.

As an illustration of this point, let us consider the inter­
action between meson fields and a single nuclear particle; 
the interaction operators occurring in the two forms of the 
Hamiltonian are, according to (56) and (86),
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Q (new var.)

©o +

terms of higher order 
in field components,

(98)

where is given by (67) and

©o ~ —K ~-V div JF’4-rot —JPgrad *p}  dp. (99)

A striking difference between these operators is that all 
velocity-independent terms of first order in the field com­
ponents have disappeared from the operator corresponding 
to the use of the new variables. This indicates that the 
velocity-independent interaction ©0 in the old variables ac­
tually gives only velocity-dependent contributions to the 
probabilities of emission or absorption of single mesons by 
a nuclear particle. In this simple case, the equivalence of 
the two modes of calculation of these probabilities is rea­

dily verified as follows. Observing that ©0 = —— [ 

we may write

o = @ +1- r + fterms of hi^her I (too)
he K ' \ order.

The probability per unit time of a process of emission or 
absorption of a single meson is in first approximation pro­
portional to the square of the same matrix element of either 
0 or Q, corresponding to two states of the same unper­
turbed energy Now, according to (100), such
matrix elements are actually equal to the approximation 
considered, since the corresponding matrix element of

± {¿zr(

is zero.



On the Field Theory of Nuclear Forces. 55

We should finally like to point out that the use of the 
transformed variables brings considerable simplification in 
the discussion of the processes due to the interaction of 
meson fields and nuclear particles with electromagnetic 
fields or with electrons and neutrinos. To such problems, 
which include “optical” properties of nuclei and ß-disinte- 
gration, we shall come back in later papers.
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Part IH.
Stationary states of the deuteron.

We shall now apply the potential of interaction between 
nuclear particles ^n, derived from the special form 
of meson theory proposed in this paper, to the study of 
the stationary states of the simplest nuclear system, the 
deuteron. In this discussion, the velocity-dependent coupling 
will be treated as a perturbation. We therefore begin by 
recalling the main features of the solution of the problem 
for a potential of the form *& n, as given by Kemmer ]8), 
and derive from it a rough fixation of the numerical 
values of the constants | gr | and | </a |. We then estimate 
the influence of the perturbation potential on the 
binding energy and eigenfunction of the ground state and, 
finally, apply the last result to the calculation of the 
electric quadrupole moment of the deuteron in this state.

1. Stationary states of the deuteron as determined 
by the static potential.

Let us first consider the stationary states of the deu­
teron as determined by the static potential Following 
Kemmer 18), we describe these states, in the frame of 
reference in which the centre of gravity is at rest, by the 
proper solutions of the equation
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j y a grad + ß Mc2 + %>n (r) } ( x ) = E YE ( x ), (101)

where x = x —x are the relative coordinates*,  r = |x|, 
•> ~>N ->F P
a = a —a , ß = p3 + p3 and M <^=> MN oo Mp. As shown 
by Kemmer, the non-trivial proper solutions reduce to three 
types, which he denotes by la, lb and II b, a and b 
referring to the even or odd character of the eigenfunc­
tions. In the non-relativistic approximation, types I and II 
correspond respectively to the triplet and to the singlet 
system; in this approximation, each state is characterized 
not only by the energy E and total angular momentum 
j, but further by the orbital momentum I, and we have

Ifor type I a : Z = j ± 1,
for types lb and II b: I = j.

The radial part of the “large” (i. e. velocity-independent) 
components of the proper solutions is in all cases deter­
mined by a Schrödinger equation

(J (^--Î-) + rÇ'+£}«1(D = o, (102) 

where

for type la: F = [1 - 2 (- 1)J]
4tt

for type Ife: r = [1 - 2 (-1)J+1] . (]03)

for type life: r= [2 (—1)J—11 ~g\+3g*.
4 IT

In the present paper, we shall confine ourselves to a 
provisory survey. A more exact treatment of the equation

* Quantities referring to the two particles of the deuteron are 
distinguished by the upper indices N and P.
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(102) is being carried out by Dr. L. Hulthén, who will 
also apply his results to a discussion of the problems 
here treated.

As regards the description of the ground stale and of 
the excited XS state revealed by scattering experiments, we 
may, if we assume that the proper energy of the latter is 
approximately zero, use the available results of numerical 
integrations21) of the equation (102) for A states and 
E<0. These results may to a fair approximation be 
summarized 22) in the formula

(104)

where M represents the mass of the meson. For the two 
S-states concerned, which are of types I a and II b with 
J = 1 and j = 0 respectively, we therefore get

4 IT he
3(g!+g 22)

(105)

(106)

—independent (to the approximation used) of the value 
of the meson mass,—and further

he
0.56-rP-1

M
0.009, (107)

I E„ I ~ 0 .0023 MeI 2 denoting the binding energy of the
ground state. From (105) we. find
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showing that |ø2| is essentially determined by the value 
of the meson mass only. We get

£» IIItor -T-- = 1 G2 y 2 _ 0.065 ,
M 10’ 4 ir he

for = 1 gl 0.037.
M 20’ 4 IT he

(108)

The numerical values (106) and (108) provide the justi­
fication of the general statement on p. 32, that the mean 
distance between any pair of particles in stationary states 
of nuclei is large compared with the critical distance rc 
defined by (51). In fact, such mean distances will of 
course be at least of the order of magnitude k \ This may

in particular be seen for the ground state of the deuteron 
by using for the radial wave-function the approximate 
analytical representation given by Wilson 21):

(109)

The 16 components of the eigenfunction of any station­
ary state of (101), characterized by the eigenvalues of 
pP, cr^; p^, may to the first order in the velocities be 
written, with reference to the table on p. 52 and formu­
lae (6) to (14) in Kemmer’s paper, in the form 

(o) (1)
T = Y + T, (110)

where the velocity-independent term
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(0)
Y = (Ul)

and the first order term
(i) 
T = (112)

the upper sign corresponding to type I, the lower to 
type II; Z is symmetrical with respect to o^, for 
type I, antisymmetrical for type II. We shall, in the follow­
ing, only use the explicit expression of the Z and z for
states of type la and J = 1 given by the formulae (113) 
and (114) on p. 61. In these formulae, are the nor­
malized Legendre functions

and the numerical factors have been chosen so as to 
normalize the total eigenfunction to unity, provided the 
radial factor Rt is normalized in the usual way.
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2. First order perturbation of the ground state 
by the non-static potential.

The non-static potential may, according to (85), be 
written as

/ N P\ /—^NP ~>PN] 
It t M X' —X / grad cp,

(116)

Since this operator is invariant for rotations and for reflect­
ions with respect to the origin of the relative space coordi­
nates, the matrix element

is 0 only if the states A and 13 have the same quantum 
numbers / and m and the same even or odd character

(0) 
a or b. Taking account of the symmetry properties of T 

(!)
and T with respect to the spin coordinates p3 and cr3 of 
neutron and proton, it is easily seen that, to the first 
order in the velocities, we then have

if the states A and 13 belong to the same type I or II, 
while no intercombinations between states of types 1 b and 

(0) (1)
II b occur. Since, for a given type, T and T are of different 
symmetry with respect to the p3’s and o3’s, we have

(0) —(°) —>PN’d)
T^X Y4=-nX
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(0)

observing further that Y corresponds to the eigenvalue 1 
JV p

of p3 p3, and that

or, using the expressions (111), (112),

(118)

Taking now as stale A the ground state and as state 
13 any other state combining with it, i. e. a state of type 
la and energy E, with / = 1, and I — 0 or 2, we may 
easily from (117), (118) calculate the corresponding matrix 
elements with the help of the representation (113), (114); 
since these matrix elements must obviously be independent 
of m, it is only necessary to carry out the calculation for 
an arbitrarily chosen value of in. The result is

(119)
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The displacement of the ground level due to the poten­
tial is thus in first approximation, if we use for jR0 the 
expression (109),

AE0 = 5ffig2 —AÁ
4tt he

_ 5 9192. fifi
4ir he

a4 \ — (a+Dx

*>0

(x 4-1) dx

2

■Mc^ a4 (a 4- 2)
2 (a 4-1)2’

(120)

Assuming =

(108) and (54),

— and a = 2.13, we find, according to

I A Eo I æ 0.01 • I 5 ?!. j?/11 • Afc2, 
f 4ir/ic (121)

the double sign, corresponding to the two possible choices 
of the sign of f2 : g2. We thus see that if, for instance, the 
factor ' AJ js of the same order of magnitude*as  ■ .Iff1 ,

j/4 it he l/4 it he
i. e., according to (106), cv>0.16, the displacement | AE0 | is 

quite considerable, being in fact more than - of the whole 
binding energy |E0|.

This circumstance would make a more rigorous treat­
ment appear desirable, but one should not forget that the 
existence of a universal length r0 might introduce just in 
the determination of A Eq—in contrast to effects depending 
on the static potential only—a quite appreciable modifi­
cation. Although it is difficult to estimate the nature of such 
a modification, one might presume that one could get an 
idea of it simply by extending in (120) the integration over 
x only from xr0 to infinity. According to (97) and (108), this 
would reduce the value of AE0 by about a factor 2. It may 
be observed that a similar modification would leave the mean 
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value of the static potential practically unchanged; with 
reference to the formulae (129), (130) below for the qua­
drupole moment of the deuteron, it will be seen that also 
this quantity is not appreciably affected by the modification 
just discussed.

At any rate, it is easily seen that even such a large 
correction as (121) to the binding energy Eo would not 
essentially modify the numerical values of the constants 
løj and 102 |, and would therefore not impose any essen­
tial limitation on the choice of the constant /J

The perturbed eigenfunction  0. , t m of the 
ground state may be written 

C (E, I = 0|^|0)
— ^E„Z=0;/ = l,m + \ E0~É E,l 0-,j (ÍE

^0

all states of types I a other than the ground state belonging, 
in our case, to the continuous spectrum. In the calculation 
of the electric quadrupole moment to the first order, only 
the last integral will give a contribution.

(122)

D. Kgl. Danske Vidensk. Selskab, Math.-fys. Medd. XVII, 8. 5
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3. Electric quadrupole moment of the ground state.

The quantity defined as “electric quadrupole moment” 
of the normal state of a nucleus in interaction with an 
external electric held is23)

j = \ m = / (3 COS" ® - 1) f2 Om = . dv

- Ç I /, m = ; |*  P2,0 <C0S ô> rft?-
(123)

According to (122), this gives for the ground state of the 
deuteron, in first approximation,

Since the first order of magnitude in the velocities of the 
nuclear particles is about the same numerically as that of 

the parameter -—, we should also take account of any1 4 IT he J
quadrupole moment of second order in the velocities which 
could be present in the unperturbed system; it is imme­
diately seen, however, from (110) to (113), that in our case 
such a quadrupole moment

\ |YE,;/,m = /|2 ‘J 2 ^2,o(cose) r2dv
t' I 

reduces, to the order of magnitude indicated, to

which vanishes because
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is independent of the angular variables.
Since, according to (113), (114) the product

4JBO)/=0;/-l, m-1 ,VKE,Z=2;j=l,»i=l

reduces, after summation over the spin coordinates and 
integration over the angle q>, to

1 R*  RiE}
2 |/5 /J^(COS6)' / ’

the expression (124) takes the simple form
QO

[(01 r21 E, I = 2) (E, I = 2-1 10) + conj. ) dE

o

(01 r21 E, / = 2) = ( «■ (r) r'2e* (r) r dr.
10

where

(125)

(126)

With the same notation, the integral occurring in the ex­
pression (119) of (E, I = 2 1^,1 0) may he written

/ d <p . (JE) *\
if account is taken of’the fact that I , Ro E2 = 0. 

\dr Jr^o
Taking now the radial wave-functions real, we thus get

.7 iff a fi
4 it he

(128)

5
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An estimation of the order of magnitude of Q may be 
obtained by writing, on account of the completeness of the 
system of eigenfunctions

5 4 TT he

Em being some eigenvalue, for which it is natural to assume 
the value corresponding to the maximum of the numerator 
of the integral in (128). Using (109) we find

(°le -(Kr + 3 + l)

3 a3(a2 + 4a + 5)
2‘ (a + l)4

(130)

The value of Em was estimated by taking for the 
Bessel function ]/kr Ji/t(kr) ^with k = ~ corresponding 

to a complete neglect of the static potential. It was found
that the maximum of the numerator of the integral in
(128), calculated in this way, lies at about km <*>  1.3 k, or

(X)
2

Me2

0.017 Me2.
(131)

For the absolute value of Q, we therefore get

0.16,9i ± ft 9i
|/4tt he j/4 TT he

(132)

or, if we assume
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I Ql oo 0.1 4-10~27c^2- (133)

The only meaning of this rough calculation is to show 
that the value of Q, on the present theory, may well be 
of the order of magnitude indicated by the provisory em­
pirical results13)110); the theory may of course be fitted 
to account for any sign of the quadrupole moment, prac­
tically without influence on its absolute value. We see at 
any rate that, while the existence of a quadrupole moment 
is of fundamental importance in pointing to a relatively 
large contribution of directional couplings to the interaction 
between nuclear particles, the incorporation of such an effect 
in the meson theory does not involve any considerable 
restriction in the choice of the formalism.
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